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Abstract 
 In this project, we explore distance in the context of  metrics. More specifically, we take a look at an 
integral metric that is used to determine the distance between sets. The motivation behind this project is to 
determine that the integral metric we use is meaningful in the context of  our data set. The data set we use 
consists of  trajectories of  cars along a portion of  the I5 highway. Through training, testing and evaluating 
this model on the data set, we can reach conclusions on the structure of  the data and the success of  this 
integral metric in terms of  a classifier. In the end, we can both determine whether or not this integral metric 
fits with the data set chosen and explore other areas where the metric could possibly succeed or where it 
might fail. 

Chapter 1
Introduction 

 In the data analysis, the task of  classification involves identifying the category that new data will fall 
under. This can provide a look into the structure of  the data and any patterns it may have. We consider 
the use of  integral metrics as a classifier. In a simple sense, a metric is used to determine distance. For our 
purposes, we look at an integral metric to capture the distance between two sets. Through this evaluation, 
we are able to explore what it is that this integral metric truly does and how it looks at distance. By compar-
ing it to other metrics, we can see what makes this integral metric unique. Additionally, we can see in what 
context this integral metric is most successful and where it might fail. Our end goal is to determine whether 
or not this metric can be useful on the chosen data set. 
 The data set on which we evaluate the performance of  this integral metric includes a series of  tra-
jectories (pathways of  the movement of  an object) of  cars on a portion of  the I5 highway. Each trajectory 
represents the movement of  a car in a lane on the highway. For our purposes, we use this new way to define 
distance as a model for how we can break up this data. We are able to see how this integral metric can 
decipher the different classes within the data. This “breaking up” of  the data leads to our task of  the classifi-
cation of  trajectories. We evaluate how well our integral metric is able to determine which class each of  the 
trajectories belongs to, based on the given labels of  data. Using distance matrix computations and clustering 
methods, we can see the level of  success that this integral metric has in terms of  trajectory classification. 
After using a validation method, we can come to a conclusion on how this metric works with the data set. 

Chapter 2 
Mathematical Background 

 There are many different ways to describe distance. For example, think of  the distance between your 
home and a convenience store. One way to measure this distance is what is commonly known as the taxi-
cab distance, which is the distance that is taken by a car traveling square blocks. Another common way to 
measure distance is what is often thought of  as the shortest distance, sometimes called the “usual distance” 
or straight-line distance. In mathematics, a generalization of  distance can be captured by what is called a 
metric. 
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A metric space (X, d) is a set X with a metric d defined on X where d has all of  the properties as above. 

 This first example is something you might have seen in elementary school. This metric describes the 
distance between two numbers on the number-line. 

 Example 2.0.1. This example calculates the distance between two quantities in      , and the absolute 
value of  this difference is taken because distance is always positive. 

 One of  the most common metrics is the Euclidean metric, used to calculate the distance between 
points. This metric is referred to as the usual distance, or straight-line distance, mentioned previously. The 
Euclidean metric differs from the above metric because it represents distance in        . 

Example 2.0.2. Euclidean Distance. This is the formula for Euclidean distance in . 

 The following example, known as the taxicab metric, represents the distance a car might travel 
around blocks of  a city.

Example 2.0.3. The taxicab metric is the metric of   defined by:

for all points. It is equal to the total length of  any path connecting these two points along vertical and hori-
zontal line segments [4]. 
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Figure 2.1. Taxicab Metric

 However, what if  we would like to think of  distance in a different way? What if  we desire a 
distance between sets that are more than just single points? For example, the distance between two lines 
or two curves. The Hausdorff distance, Example 2.0.4, is one way to calculate the distance between such 
sets. Later, we examine the integral metric as another way to measure the distance between sets. 

 Example 2.0.4. The Hausdorff Distance. This metric is used to calculate the distance between 
two sets. Informally, two sets are close in the Hausdorff distance if  every point of  either set is close to 
some point of  the other set. The Hausdorff distance is the longest distance you can be forced to travel, 
from a point in one set to another point in the other set. In other words, it is the greatest of  all the dis-
tances from a point in one set to the closest point in the other set. Let X and Y be two non-empty subsets 
of  a metric space (M, d). We define their Hausdorff distance dH (X, Y) by: 

Figure 2.2 demonstrates two rings which represent two sets [8]. 

Figure 2.2. Hausdorff Distance [8]
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2.1. Integral Metrics

 In this paper, we focus on a type of  metric called an integral metric. Much like the Hausdorff 
distance, it is used to calculate the distance between two sets. Charatonik and Insall (see [10]) define the 
following: 
 

 
 

 
 If  p ≥ 1 and λ is strictly positive then Dp(A, B) is a metric (as proved in [10], Theorem 3.2). We 
will only consider the Lebesgue measure, which meets this criteria. The following example shows a nu-
merical application of  this integral metric. 
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Now we split up the integral into the sum of  two integrals. 

which is just simply the Hausdorff distance. One of  the main differences between the integral metric 
and the Hausdorff metric is that the integral metric accounts for the underlying compact metric space 
X. Informally, the integral over X can be thought of  as the infinite sum of  the differences between the 
distance from each point in X to the sets A and B. In fact, if  we approximate X with a finite set, then the 
integral can be approximated with a Riemann sum. 

 

which follows from Fubini’s Theorem (this theorem can be found in any Calculus 3 textbook). To ap-
proximate Dp(A, B) with a Riemann sum, we partition the rectangular space X into a set of  n × n 
squares. For each of  the “center” points of  the squares, the integrand’s value at the center is multiplied 
by the area of  the n × n box to represent the volume; then the sum of  these volumes is an approximation 
of  Dp(A, B). 
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2.2. Clustering

 Cluster analysis is one way to explore data by grouping a set of  objects so that objects in the same 
group are more similar to each other than those of  the other group. There are many different clustering 
algorithms used for data analysis. The purpose of  cluster analysis can be to discover the success with 
which a particular clustering model can determine a difference between members of  a set. In the context 
of  supervised learning, clustering can be used to classify objects to given labels, whereas in unsupervised 
learning, the purpose is merely to learn more about the structure of  the data without having specific 
labels [9]. 
 K-medoid clustering is a method that uses the partitioning around medoids (PAM) algorithm. In 
general, the PAM algorithm works by first choosing k data points to be what are called the medoids, and 
then associating each data point to which ever medoid it is closet too. Then, for each medoid, it consid-
ers the swap of  the medoid with another data point in the group and computes the cost change. If  the 
cost decreases, the swap is performed. If  not, the algorithm is complete and the best solution is found for 
that particular set of  initial medoids [1]. 

2.3. Model Validation

 Model validation is the process of  ensuring that the model serves its intended purpose. In the case 
of  classification tasks, including trajectory classification, the goal is to use the model to accurately deter-
mine the proper class to which each element in the data set belongs. 
 K-fold cross validation is a validation method with the purpose to test how accurately a model 
will perform on an independent data set. The first step is to randomly shuffle the data set and then break 
up the data into k sets. For each of  the k-groups, set one group aside as a testing group and then fit the 
chosen model to the rest of  the separated data as a training group. After the given model is fit to the 
training group, evaluate the model on the group that was set aside as a testing group and record its evalu-
ation score. This is then repeated for each k-set. Lastly, compare all of  the evaluation scores for each run 
and summarize conclusions [2]. 
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Chapter 3
Using the Integral Metric on Data

3.1. Small-Scale Examples

 Example 3.1.1. To illustrate a general way in which this integral metric works, the following ex-
ample is of  four horizontal lines which are equally spaced from each other. The purpose of  this example 
is to show exactly what this metric is expected to decipher in terms of  distance. 

Figure 3.1. Stimulated Parallel Lines

 Before running the distance matrix, we would expect based on Figure 3.1 that the two farthest 
lines would be the yellow and green. 

 
 As shown in the distance matrix, the greatest distance is between the green and yellow lines. The 
distance matrix also shows that any two lines next to each other are equally as close, due to how they are 
equally spaced on the graph. Because of  this, we see symmetry in the matrix. In this example, we used n 
× n boxes of  side length 0.05 and p value of  2. 
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 Example 3.1.2. This example displays another insight we have gathered about this metric. This 
shows that the number of  points or the size of  the sample can affect the accuracy of  this metric. We ran 
three plots, two densely populated and one sparse example, and ran a distance matrix over these three. 

Figure 3.2. Simulated Representation of  Variation in Sample Size
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3.2. Trajectory Classification

 A trajectory can be described as the path representing the motion of  an object in a certain space. 
There are many different ways to represent a trajectory depending on the information that it is intended 
to capture. A trajectory can be a vector that also has a velocity and time component. Or, a trajectory can 
be used to simply represent the position of  an object at a moment in time. More specifically, a trajectory 
is a curve that can be approximated by a set of  points that is used to represent the motion of  an object. 
For our purposes, let a trajectory be the following: 

 Trajectory classification is the process of  identifying trajectories of  similar motion. Although the 
specific data set or classification method may differ, the goal remains to find similarities amongst the mo-
tion of  objects. See [7] for more information on the different types or “levels” of  trajectories and what 
they represent in terms of  classification. 

 The data we use in this project comes from [6] and contains six different scenes. There are three 
simulated highway scenes, one actual highway scene, one actual intersection scene and one scene from 
the inside of  a lab. The data we focus on is the simulated highway scene. The actual highway scene is 
from a portion of  the I5 highway outside of  UCSD. The three simulated scenes are supposed to mim-
ic this actual data. For each of  the 3 out of  the 4 highway scenes, there are 8 classes representing the 8 
lanes of  traffic. This data set has two components: the ‘tracks’ which represent each individual trajectory 
and the ‘truths’ which contain the designated class label (1-8) for each trajectory. We utilize this labeled 
data to see if  our model will correctly classify each trajectory based on the truth labels given in the data. 
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3.3. Simulated Interstate Data

Figure 3.3. Plotted I5 Simulated Data

 Let’s consider the I5 simulated data (I5Sim), which approximates the trajectories of  cars on the I5 
freeway. 
 We use the k-fold cross validation method, with k = 4 on a subset of  the data set of  size 200. Each 
of  our training sets of  data are of  size 150, while our testing data is of  size 50. On each of  the training sets, 
we use the integral metric to define distances between trajectories. With parameters p = 2 and n × n boxes 
of  side length 1, we use a k-medoid clustering method PAM to build a model with eight clusters [3] (PAM is 
implemented in the R package [5]). Using the medoids chosen from the PAM algorithm on the training set, 
we compare the distance from each of  the trajectories in the testing set and associate each trajectory with its 
closest medoid. 
 Lastly, in order to evaluate the proficiency to which this method classifies each trajectory, we create a 
confusion matrix where we are able to see the accuracy of  classification. We identify the truth label of  each 
of  the trajectories and compare this truth label to the cluster that our training data assigned this trajectory. 
For this particular data, we see a perfect classification due to the simulated nature of  the data. We can see in 
the sum of  the four confusion matrices that all of  the data lies on the diagonal, meaning that the predicted 
cluster from the k-medoids method matches the truth cluster. Our model clusters each of  the 200 trajectories 
into the correct cluster based on the truth labels provided with the data. 
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Chapter 4
Conclusions and Future Work

 Using the data set of  trajectories as well as some simple examples, we were able to gain insight into 
how this metric works and where it is most successful. Our investigation suggests that integral metrics could 
be a useful tool for trajectory classification. When using the I5 simulated data, the metric classified all trajec-
tories with 100 percent accuracy. Additionally, in the more simple examples, the metric is shown to distin-
guish between horizontal lines in different places in the plane, as well as distinguish between the same line 
but with different sample sizes. 
 While the integral metrics ability to distinguish between lines in different places in the plane is im-
portant for trajectory classification, this can make other classification tasks more challenging. For example, 
we attempted to use the integral metric to classify the MNIST data set of  handwritten digits [11]. The goal 
was to get 10 total classes for the digits 0-9. However, we noticed that this metric separated some of  the 
digits into two classes. For example, the ones became two separate clusters. One of  the clusters had ones that 
were slanted to the right and the other cluster of  ones were slanted to the left, Figure 4.1 is an example. For 
the purpose of  this classification, this was not the intention. It has been suggested by Matt Insall that this 
problem could be fixed by simply adjusting the p value in the metric, we hope to explore this in the future. 
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 We also hope to further explore using the integral metric on the trajectory data set highlighted in this 
paper. Our intention is to run the same process we used in this paper on the real I5 data set that is not as 
clean as the simulated data set (see Figure 4.2) and determine how successful the metric would be in classify-
ing. Additionally, the I5 sim 3 data 

Figure 4.1. Handwritten Ones from MNIST Data Set [11]

set has 16 classes where each lane of  traffic has a class for slow cars and a class for fast cars. The difference 
is seen in the sample size of  the trajectories where the slower cars have fewer data points and the faster cars 
have more data points. We predict this metric to be successful in this task because of  the conclusions drawn 
from the basic example, where the metric is able to distinguish between different sample sizes of  the same 
line. 

Figure 4.2. Additional 15 Data
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